Firechecking

Scikit-Learn学习

参考文档

  1. http://scikit-learn.org/stable/tutorial/basic/tutorial.html
  2. http://www.jianshu.com/p/516f009c0875

安装

  1. 安装Anaconda
  2. conda install scikit-learn

机器学习分类

监督学习(supervised learning)

  1. 分类(classification):离散预测
  2. 回归(regression):连续预测

监督学习(unsupervised learning)

  1. 聚类(clustering)
  2. 密度估计(density estimation)

基础

模型持久保存: pickle/joblib

1
2
3
4
5
6
7
8
9
10
from sklearn import svm
from sklearn import datasets
clf = svm.SVC()
iris = datasets.load_iris()
X, y = iris.data, iris.target
clf.fit(X, y)
import pickle
s = pickle.dumps(clf)
clf2 = pickle.loads(s)
clf2.predict(X[0:1])

joblib为sklearn内置发放,效率比pickle更高,但只支持导出到文件,不支持导出到字符串


Examples

数字识别

1
2
3
4
5
6
7
from sklearn import datasets
from sklearn import svm
if __name__ == "__main__":
digits = datasets.load_digits()
Iclf = svm.SVC(gamma=0.001,C=100.)
clf.fit(digits.data[:-1],digits.target[:-1])
print clf.predict(digits.data[-1:])